В23-Н	ISC-101 English for Technical Writing										
L		T	P	Credit	End	Internal	Total	Time			
					Semester	Assessment					
		Exam									
2		- 2 70 30 100 3h									
Purpose	To intro	To introduce the basics of communication and technical writing skill for the students of Engineering									
CO 1	Building	up the vo	cabulary								
CO 2						ding writing skills					
CO3							mmunica	tion for a given			
	situation and will be able to speak assertively and effectively.										
CO4	Students will be able to write effective reports, proposals and papers and present										
	themse	elves pro	fessionally	through e	ffective res	umes and interv	views.				

UNIT-1

Fundamentals of communication skills

Meaning and types of communication skills, Listening, Speaking, Reading and Writing, Importance of technical communication, Barriers in communication, Tools of effective communication.

UNIT-2

Vocabulary Building

Word formation &Synonyms and Antonyms, One-word substitution, Abbreviations of scientific and technical words, phrasal verbs and Idioms.

UNIT-3

Fundamentals of Writing Skills

Job application, CV writing, Business letter, Report writing and E-mail writing, redundancies, precise writing skill, Basics of grammar: uses of tenses, subject verb agreement, narration, active voice.

UNIT-4

Fundamentals of Speaking skills

Speaking skills, Oral presentation, Body language, Group discussion, Technical Telephonic conversation. Introduction to phonetic sounds, symbol and articulation

Suggested Books:

- Practical English Usage. Michael Swan. OUP. 1995.
- Remedial English Grammar. F.T. Wood. Macmillan. 2007
- On Writing Well. William Zinsser. Harper Resource Book. 2001
- Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011.
- Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press

B23-HSC-103		English Language Lab									
L	Т	P Credit Practical Internal Total Time									
		Exam Assessment									
-	-	2 1 60 40 100 2h									

OBJECTIVES

- 1. Listening comprehension
- 2. Pronunciation, intonation, stress and Rhythm
- 3. Communication at work place
- 4. Group Discussion
- 5. Interview
- 6. Writing skills: speech writing

B23-ESC-		Programming for Problem Solving											
101													
Lecture	Tutorial	Practical	Exam Assessment										
3	0		`- 3 70 30 100 3 Hour										
Course Ou	outcomes												
CO 1	To learn	the fundamen	ntals of comp	outers and to unde	erstand the various	us steps in	program						
	developm	ent.											
CO 2	To learn	the syntax an	d semantics	of C programmin	g language. To l	earn the us	age of						
	structured	structured programming approach in solving problems.											
CO 3	To learn t	Γο learn the usage of structured programming approach in solving problems.											
CO 4	To analy	ze the output	based on the	given input varia	ables.								

UNIT-I

Introduction to Programming; Introduction to components of a computer system (Disks, Memory, Processor, Operating System, Compilers etc.), Algorithm Writting, Flowchart, Pseudocode with examples. From algorithms to programs.

UNIT-II

C language variables and data types, Syntax and Logical Errors in compilation, object and executable code. Operator (arithematic, relational, logical, bitwise operator) and Precedence, Conditional Branching and Loops.

UNIT-III

Arrays, Arrays (1-D, 2-D), Character arrays and Strings, Structures, Defining structures and Array of Structures, Pointers, Idea of pointers, Defining pointers, Use of Pointers in self-referential structures, notion of linked list (no implementation), Function, Functions (including using built in libraries), Parameter passing in functions, call by value.

UNIT-IV

Idea of call by reference, Recursion, Recursion as a different way of solving problems. Example programs, such as Finding Factorial, Fibonacci series, File handling in different mode

Suggested Books:

- 1. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill.
- 2. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill.
- 3. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India.

Note: Note: An approved question paper template is to be provided to the paper setter.

B23-ESC-													
105		Programming for Problem Solving Lab											
L	T	Practical	Credit	Internal Assessment	Practical	Total	Exam Time						
0	0	2 1 40 60 100 3 Hrs											
Purpose		To understand the various steps in program development, syntax of C programming language and usage of structured programming approach in solving problems.											
				Cou	rse Outcomes								
CO1	To Fa	amiliarize v	vith prog	gramming env	rironment								
CO 2	To so	To solve Problems involving if-then-else structures											
CO 3	To de	Γο define and declare Simple functions to add, multiply etc											
CO 4	To ca	ll Recursive	e functio	ns and imple	nent factorial, Fibona	cci series							

LIST OF EXPERIMENTS

- 1. To Familiarize with programming environment
- 2. Simple computational problems using arithmetic expressions
- 3. Problems involving if-then-else structures
- 4. Iterative problems (e.g., sum of series)
- 5. 1D Array manipulation
- 6. Matrix problems (Addition and Multiplication)
- 7. String operations
- 8. Simple functions to add, multiply etc...
- 9. Programming for solving Numerical methods problems
- 10. Recursive functions factorial, Fibonacci series
- 11. Pointers and structures
- 12. File operations (to read from file and write into file)

Note: At least 9 experiments to be performed during the semester.

B23-HSC-													
102		Design Thinking											
		Internal Exam											
Lecture	Tutorial	utorial Practical Credit End Semester Exam Assesment Total Hour											
0	0	0 3 1.5 0 100 100 3 Hr.											
	Course Outcomes												
CO1	Students	Students will be able to understand the concept of Design Thinking											
CO2	Students	Students will be able to empathize and define the problems											
CO3	Students	Students will be able to ideate and prototype the proposed solution											
CO4	Students	will be ab	le to test a	nd present the proposed	solution								

List of Experiments

- 1. Introduction to Design Thinking
- 2. **Empathize** on real life problems
 - a) Observe
 - b) Engage
 - c) Watch and Listen
- 3. **Define** the problem statement
 - a) User
 - b) Needs
 - c) Insights
- 4. **Ideate** on problem statement
 - a) Brainstorming
 - b) Constraints
 - c) Best solutions
- 5. **Prototype** the design solution
 - a) Start building
 - b) Timing of prototype
 - c) Build a prototype
 - d) Build with user in mind

- 6. **Test** the design solution a) User's hand on

 - b) Create experiences
 - c) Users to compare
- 7. Final power point Presentation on the proposed solution

B23-BSC-104		Engineering Chemistry									
L	Т	P Credit End Internal Total Semester Exam									
3	0	0 0 3 70 30 100 3h									
Purpose	•	the students we of their stud		•	concepts of cheering field	emistry, the	student faces				
CO1	An insight i	nto atomic a	nd molecula	r orbitals and	l bonding in n	nolecules					
CO2	Knowledge molecules	Knowledge of basic concept of spectroscopic techniques for identification of molecules									
CO3	To understand basics of thermodynamics and phase equilibria										
CO4	To understa	nd nature of	corrosion an	d its prevent	ive measures		·				

UNIT -I

Molecular orbitals of diatomic molecules. Equations for atomic and molecular orbitals. Energy level diagrams of diatomic molecules (O_2 , N_2 , CO, NO, CN, HCl and HF). Pi-molecular orbitals of butadiene. Concept of aromaticity. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

UNIT-II

Spectroscopic techniques and applications: Principles of spectroscopy and selection rules. Electronic spectroscopy. Fluorescence and its applications in medicine. Vibrational spectroscopy and its applications. Nuclear magnetic resonance and magnetic resonance imaging, surface characterization techniques. Diffraction and scattering.

UNIT-III

Thermodynamic functions: Internal energy, entropy and free energy. Estimations of entropy and free energies. Free energy and EMF. Criteria for feasibility/spontaneity of a process, Chemical potential, Clausius – Clapeyron equation and its application, Numerical problems.

Phase equilibria: Phase rule and derivation of phase rule equation, terms involved in phase rule (phase, component, degree of freedom), one component system (Water system), two component system (Lead-silver system), application of phase equilibria.

UNIT - IV

Corrosion and its prevention: Introduction, Galvanic cell, types of Galvanic cell (Chemical and concentration cell), Cell potentials, the Nernst equation and its applications, types of corrosion (Dry and wet corrosion), electrochemical theory of corrosion, Bimetallic corrosion, Pitting corrosion, Differential aeration corrosion, water -line corrosion, stree corrosion, factors affecting corrosion rate, preventive measures of corrosion (design of material, anodic and cathodic protection and protective covering)

Text/Reference Books:

- 1. AICTE's Prescribed Textbook: Chemistry I with Lab Manual, Khanna Book Publishing.
- 2. Engineering Chemistry, by Manisha Agrawal.
- 3. University chemistry, by B. H. Mahan.
- 4. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane.
- 5. Fundamentals of Molecular Spectroscopy, by C. N. Banwell.
- 6. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan. AICTE Model Curriculum for UG Degree Course in Computer Science and Engineering 54

B23-BSC-114		Engineering Chemistry Lab									
L	Т	Γ P Credit Practical Internal Total Time Exam Assessment									
0	0	0 2 1 60 40 100 3h									
Purpose	To acquaint	the students	with the know	vledge of basi	c phenomenon/p	racticals of	chemistry				
CO1	To make the given samp		amiliar with	the titramet	ric methods for	r analysing	strength of				
CO2					fferent instrum g/technologica		in various				

Choice of 10-12 experiments from the following:

- 1. Determination of surface tension of a given liquid by drop number method using Stalagmometer.
- 2. Determination of relative viscosity by Ostwald viscometer.
- 3. Determination of viscosity of lubricating oil by Redwood Viscometer.
- 4. To synthesise drug molecule (Aspirin/ Paracetamol)
- 5. Determination of refractive index of given organic liquid by Abbe's refractometer.
- 6. Determination of Flash point and fire point of oil by Pensky Martin appratus.
- 7. Determination of amount of Na and K in given water sample by Flame photometer.
- 8. Determination of strength of given Hydrochloric acid solution by titrating it with NaOH solution conduct metrically.
- 9. Determination of strength of given Hydrochloric acid solution by titrating it with NaOH solution using pH meter.
- 10. Determination of concentration of given sample of KMnO₄ using spectrophotometer.
- 11. Determination of alkalinity of a given water sample.
- 12. Determination of Calcium and Magnesium hardness by EDTA method.
- 13. Determination of Chloride content in given water sample.
- 14. Determination of amount of dissolved oxygen in given water sample by Winkler's method.
- 15. Determination of total iron content present in a given iron ore solution by using KMnO₄ as oxidising agent.
- 16. Determination of partition co-efficient of Iodine in carbon tetrachloride and water.
- 17. To check the presence of a given compound in a mixture using thin layer chromatography. Books:
- 1. Engineering Chemistry with laboratory experiments by M. S. Kaurav, PHI learning Private ltd.
- 2. AICTE's Prescribed Textbook: Chemistry I with Lab Manual, Khanna Book Publishing

B23-BSC-107		MATHEMATICS-I											
L	T	P	Credit	End	Internal	Total	Time						
				Semester	Semester Assessment								
				Exam									
3	1	-	4	70	30	100	3 h						
Purpose	The 1	The primary objective of this course is to attain conceptual comprehension and											
	prese	reserve the core principles of classical calculus, through a syllabus tailored to											
	equip	quip students with fundamental mathematical tools for the purpose of											
	mathematically modeling engineering problems and deriving solutions.												
				Course O	utcomes								
CO1						_	Iculus to notions of						
					ne applications i	t gives a ba	asic introduction on						
	Beta	and Ga	amma func	tions.									
CO 2	To de	evelop	the tool of	series for le	arning advanced	d Engineeri	ing Mathematics						
CO 3	To fa	miliariz	ze the stud	dent with ca	lculus (derivativ	e) of the f	unctions of several						
	varia	bles th	at is essen	tial in most	branches of eng	ineering.							
CO 4	To fa varia		ze the stud	lent with ca	lculus (integratio	on) of the f	unctions of several						

UNIT-I (8 hrs)

Single Variable Calculus: Evaluation of definite and improper integrals: Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions; Indeterminate forms and L'Hospital's rule.

UNIT-II (10 hrs)

Sequence and Series: Convergence of sequence and series, tests for convergence (Comparison test, D'Alembert's Ratio test, Logarithmic test, Cauchy root test, Raabe's test).

Fourier series: Introduction, Fourier-Euler Formula, Dirichlet's conditions, Change of intervals, Fourier series for even and odd functions, Half range sine and cosine series.

UNIT-III (10 hrs)

Multivariable Calculus (differentiation): Taylor's series (for one and more variables), series for exponential, trigonometric and logarithm functions.

Partial derivatives, Total differential, Chain rule for differentiation, Homogeneous functions, Euler's theorem, Jacobian, Maxima, minima and saddle points; Method of Lagrange multipliers.

UNIT-IV (12 hrs)

Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar).

Applications: areas and volumes; Triple integrals (Cartesian), orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds.

Suggested Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. Erwin Kreyszig and SanjeevAhuja, Applied Mathematics- I, Wiley India Publication, Reprint 2015.
- 3. Reena Garg, Engineering Mathematics, Khanna Book Publishing Company, 2022.
- 4. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson.
- 5. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 6. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- 7. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.
- 8. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications.
- 9. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 2023.

B23-BSC-108		MATHEMATICS-II											
L	T	P	Credit	End	Internal	Total	Time						
				Semester	Assessment								
				Exam									
3	1	•	4	70	30	100	3 h						
Purpose	This	course a	ims to p	orovide prospe	ctive enginee	ers with a co	mprehensive						
	under	standing o	of matrix	operations, ordi	inary differen	tial equations, a	and complex						
	varial	oles, enabli	ing them to	o proficiently a	pply advanced	l mathematical o	concepts and						
	tools t	ools to address complex problems.											
				Course Outcome	es								
CO1	To de	evelop the	essential	tool of matrices	s and linear	algebra in a cor	mprehensive						
	mann	er.											
CO 2	To int	troduce eff	ective mat	thematical tools	for the solut	ions of differenti	al equations						
	that n	nodel phys	ical proces	sses.									
CO 3	To a	cquaint th	e student	t with vector	calculus to	solve advance	engineering						
	proble	ems.											
CO 4						for multivariabl							
			pasics of	Curve fitting for	r fitting of dat	a originated fro	m real world						
	proble	ems.											

UNIT-I (8 hrs)

Matrices: Rank of a matrix, elementary transformations, elementary matrices, Gauss Jordon method to find inverse using elementary transformations, normal form of a matrix, linear dependence and independence of vectors, consistency of linear system of equations, linear and orthogonal transformations, Eigen values and Eigenvectors, properties of eigenvalues, Cayley – Hamilton theorem and its applications.

UNIT-II (10 hrs)

First order ordinary differential equations: Exact, linear and Bernoulli's equations, Euler's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x.

Ordinary differential equations of higher orders:

Second order linear differential equations with constant coefficients, method of variation of parameters, Cauchy and Legendre's linear differential equations.

UNIT-III (11hrs)

Vector Calculus-Differentiation: Introduction, Scalar and Vector point functions, Gradient, divergence & Curl and their properties, Directional derivative.

Vector Calculus-Integration: Line integrals, surface integrals, volume integrals, Theorems of Green, Gauss and Stokes (without proof).

UNIT-IV (11 hrs)

Partial Differential Equations: Formation of Partial Differential Equations, Solution to homogenous linear partial differential equations (with constant coefficients) by complimentary function and particular integral method.

Curve fitting by the method of least squares: Introduction, Fitting of a straight line, fitting of second degree curve, fitting of a polynomial of degree m, fitting of a geometric or power curve of the form $y = ax^b$, fitting of an exponential curve of the form $y = ab^x$.

Suggested Books:

- 1. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 2. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 3. Erwin kreyszig and SanjeevAhuja, Applied Mathematics- II, Wiley India Publication, 2015.
- 4. W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary ValueProblems, 9th Edn., Wiley India, 2009.
- 5. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.
- 6. S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984.
- 7. E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice HallIndia, 1995.
- 8. E. L. Ince, Ordinary Differential Equations, Dover Publications, 1958.
- 9. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc-Graw Hill, 2004.
- 10. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 11. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- 12 S. J. Farlow, Partial Differential Equations for Scientists and Engineers, Dover Publications, 1993. AICTEModel Curriculum in Mathematics.
- 13. R. Haberman, Elementary Applied Partial Differential equations with Fourier Series and Boundary Value Problem, 4th Ed., Prentice Hall, 1998.
- 14. Ian Sneddon, Elements of Partial Differential Equations, McGraw Hill, 1964.
- 15. Manish Goyal and N.P. Bali, Transforms and Partial Differential Equations, University Science Press, Second Edition, 2010.

B23-BSC-106		BIOLOGY										
Lecture	Tutorial	Total	Time									
		Exam		Exam	Assessment		Hrs.					
3	0	0 - 3 70 30 100 3										
Purpose	To familiarize the students with the basics of Biology and Biotechnology											
	Course Outcomes											
CO1	Introduct	ion to Livin	g world, (Cell & Organisms.	•							
CO2	Introduct	ion to Biom	olecules a	nd Biocatalyst								
CO3	Introduct	Introduction of basic Concept of Genetics.										
CO4	Introduct	Introduction of basic Concept of Genetic Engineering, & Role of Biology in										
	Different	Fields										

Unit – I

Introduction to living world: Concept and definition of Biology; Importance of biology in major discoveries of life Characteristic features of living organisms; Cell ultra-structure and functions of cell organelles like nucleus and endoplasmic reticulum. Difference between prokaryotic and eukaryotic cell. Difference between animal and plant cell.

Classification of Organisms: Classification of the organisms on the basis of Energy, Carbon Utilization, Nitrogen Excretion and Habitat.

Unit-II

Introduction to Biomolecules: Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids & Enzymes.

Enzymes as Biocatalysts: General characteristics, nomenclature and classification of Enzymes. Effect of temperature, pH and substrate concentrations on the activity of enzymes. Elementary concept of coenzymes. Mechanism of enzyme action.

Unit-III

Genetics:-Mendel's laws of inheritance, Cell Division- Mitosis & meiosis, Genetic Disorders: Single gene & Multiple genes disorders in human.

Human Traits: Genetics of blood groups, Diabetes Type I & II.

Unit-IV

Concepts of Genetic Engineering: Definition; Tools used in recombinant DNA Technology: Enzymes, Vectors & Passenger DNA.

Role of Biology: Role of Biology in Agriculture, Medicine, Forensic science & Bioinformatics.

Text Book:

- 1. Introduction to Biotechnology, By Deswal & Deswal, Dhanpat Rai Publications N.A
- 2. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.
- 3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.
- D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012. 4.G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.

Note: The paper setter will set the paper as per the question paper templates provided Suggested Books:

- 1. Molecular Biology of cell, 4th ed. Alberts, Bruce et al. Garland Science Publishing, New York.
- 2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. Tata McGraw Hill, New Delhi.
- 3. Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox. Maxmillan/ Worth publishers.
- 4. Genetics by Snusted& Simmons.
- 5. Molecular Biotechnology: Principles Application of Recombinant DNA. Glick, B. R. and Pasternak, J. J. ASM press

Washington DC.

- 6. Kuby's Immunology, Goldsby, R A,.Kindt, T.J, Osborne, B.A.(2003) W. H. Freeman and company, New York.
- 7. Recombinant DNA 2nd Edition. Watson, James D. and Gilman, M. (2001) W.H Freeman and Company, New York.

B23-ESC- 107		Manufactur	ing Proces	sses Works	shop (B.Tech	. Semester-	I/II)						
Lecture	Tutorial	Practical	Credit	End Semester Exam	Internal Assessment	Practical	Total	Time (Hrs.)					
0	0	0 3 1.5 0 40 60 100 3											
Purpose	Purpose To make student gain a hands on work experience in a typical manufacturing industry environment.												
			Course O	utcomes									
CO 1		ll be explain hine and 3D p		nanufacturi	ng operations	used in ind	ustries an	d work					
CO 2		Students will be able to know operations and working in Fitting shop and Electrical and Electronics shops.											
CO 3	Students will be able to perform on Carpentry operations.												
CO 4	Students wil	ll be able to e	xplain met	al casting a	and welding jo	bs operation	ns.						

List of Experiments

A) Manufacturing Operations

- 1. To study various manufacturing methods.
- 2. To study different machine tools used in manufacturing industries.
- 3. To prepare a job on a lathe involving facing, outside turning taper turning, step turning, radius making and parting-off. (**Practice**)
- 4. To prepare a job involving side and face milling on a milling machines. (**Practice**)

B) CNC machining, Additive manufacturing

- 1. To study basics of CNC Machine tool.
- 2. To study the basics of additive manufacturing.
- 3. To write and simulate CNC Part program for a CNC Milling machine.(**Practice**)
- 4. To write and simulate CNC Part program for a CNC Turning machine.(**Practice**)
- 5. Modelling and converting CAD models into STL files, and Fabrication of one simple component using 3D printer from CAD models using polymers.(**Practice**)

C) Fitting operations

- 1. To Study various Fitting operations and tools used in Fitting shop.
- 2. To make a V-groove and V-notch in MS flat.(**Practice**)

D) Electrical and Electronics operations

- 1. To study basics of house wiring
- 2. To Make an electrical connection to demonstrate domestic voltage and current sharing. (**Practice**)
- 3. To perform Soldering of a resistor on a PCB. (**Practice**)

E) Carpentry operations

- 1. To study steps various tools used in Carpentry shop.
- 2. To make wooden halving joint (or Cross-Joint) of soft wood.(**Practice**)

F) Metal Casting operations

- 1. To study various components of Sand Mould and operations involved in the casting process used in Foundry shop.
- 2. To test different properties of Sand mould.(Practice)

G) Welding operations

- 1. To study various processes and tools used in welding shop.
- 2. To make a Butt joint using the given two M.S pieces by arc welding.(**Practice**)
- 3. To make a Lap joint using the given two M.S pieces by arc welding. (**Practice**)

Note: At least one experiment may be performed from each of the categories from A to G (Preferably from Practice type). In total at least 8 experiments need to be performed by the students.

Text Books

- 1. Workshop / Manufacturing Practices (with Lab Manual) by Veerana D.K(AICTE Prescribed Text book as per model curriculum)
- 2. Veerana D.KKalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology",7th edition, Pearson Education India Edition.
- 3. Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.

Reference Books

- 1. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology I" Pearson Education, 2008.
- 2. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998
- 3. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

B23-HSM-101	***		ersal Human		G 1 1							
Lecture		Understanding Harmony and Ethical Human Conduct Tutorial Practical Credit End Internal Total Time										
Lecture	Tutoriai	Practical	Credit	Semester	Assessment	Total	Time					
		Exam										
3	0											
Purpose	Purpose and	motivation f	or the course	, recapitulation	from Universal H	Iuman	•					
	Values-I											
Course Outcom	es (CO)											
00.1												
CO 1					ementarily betwe							
			sustained ha	appiness and pro	osperity which are	e the core a	spirations of all					
CO 2	human beir		nant of a Hol	istia narsnastiva	e among students	towards						
CO 2					•							
					prosperity based	on a						
GO 4				reality and the re								
CO 3		_	•	the Family and	Society and the '	Vision for						
	the Univers	al Human O	rder									
CO 4	To highlight	t plausible im	plications of	such a Holistic	understanding in	terms of eth	nical					
	human con	human conduct, trustful and mutually fulfilling human behavior and mutually enriching										
	interaction	with Nature.	·	-		-	-					

Unit 1

Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

Right Understanding, Relationship and Physical Facility (Holistic Development and the Role of Education), Understanding Value Education, Self-exploration as the Process for Value Education; Continuous Happiness and Prosperity- A look at Basic Human Aspirations; current scenario, Method to Fulfill the Basic Human Aspirations; concept of natural acceptance and ways to explore it.

Unit 2

Understanding Harmony in the Human Being

Understanding human being as a co-existence of the Self and Body;

Understanding, exploring and distinguishing between the needs of Self and Body, Understanding the Body as an instrument of Self; Understanding Harmony in the Self, Exploring Sources of Imagination in the Self, Harmony of the Self with the Body, Program to ensure self-regulation and Health, Exploring Harmony of Self with the Body.

Unit 3

Understanding Harmony in the Family and Society

Harmony in the Family – the Basic Unit of Human Interaction, 'Trust' – the Foundational Value in Relationship, Exploring the Feeling of Trust, 'Respect' – as the Right Evaluation, Exploring the Feeling of Respect, Other Feelings, Justice in Human-to-Human Relationship, Understanding Harmony in the Society, Vision for the Universal Human Order, Exploring Systems to fulfill Human Goals.

Understanding Harmony in the Nature and Existence, Implications of the Holistic Understanding – a Look at Professional Ethics:

Understanding Harmony in the Nature, Interconnectedness, self-regulation and Mutual Fulfillment among the Four Orders of Nature, Exploring the Four Orders of Nature, Realizing Existence as Co-existence at All Levels, the Holistic Perception of Harmony in Existence, Exploring Co-existence in Existence. Natural Acceptance of Human Values, Definitiveness of (Ethical) Human Conduct, Exploring Ethical Human Conduct, A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order, Competence in Professional Ethics, Exploring Humanistic Models in Education, Holistic Technologies, Production Systems and Management Models-Typical Case Studies, Strategies for Transition towards Value-based Life and Profession, Exploring Steps of Transition towards Universal Human Order.

Note: The paper setter will set the paper as per the question paper templates provided.

READINGS:

Text Books:

- a. The Textbook A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1
- b. The Teacher's Manual- Teachers' Manual for A Foundation Course in Human Values and Professional Ethics, RR Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53.
- c. Professional Ethics and Human Values, Premvir Kapoor, ISBN: 978-93-86173-652, Khanna Book Publishing Company, New Delhi, 2022.

Reference Books:

- 1. JeevanVidya: EkParichaya, A Nagaraj, JeevanVidyaPrakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi.
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews.
- 7. Economy of Permanence J C Kumarappa.
- 8. Bharat Mein Angreji Raj Pandit Sunderlal.
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)

B23-VAC-]	Personali	ity Developi	nent and Soft	Skills					
101	TD 4 1 1	D (1)	G 114			D (1) 1	7 7 ()	ran e			
Lecture	Tutorial	Practical	Credit	End	Internal	Practical	Total	Time			
				Semester	Assessment	Exam		ļ			
				Exam							
2	0										
Program	To becom	To become a person with stable mind, pleasing personality and determination in									
Objective			order	to achieve	the highest go	al.					
(PO)											
			Course	Outcomes ((CO)			,			
CO1	Students b	ecome awar	re about le	eadership.							
CO2	Students v	Students will learn how to improve communication skills									
CO3	Understan	d the team b	ouilding a	nd conflict							
CO4	Student w	ill learn hov	v to mana	ge the time.	·		·				

Unit I

Leadership Introduction to Leadership, Leadership Power, Leadership Styles, Leadership in Administration. Interpersonal: Introduction to Interpersonal Relations, Analysis Relations of different ego states, Analysis of Transactions, Analysis of Strokes, Analysis of Life position.

Unit II

Communication: Introduction to Communication, Flow of Communication, Listening, Barriers of Communication, How to overcome barriers of communication.

Stress: Introduction to Stress, Causes of Stress, Impact Management Stress, Managing Stress.

Unit III

Group Dynamics and team Building: Importance of groups in organization, Interactions in group, Group Decision Taking, Team Building, Interaction with the Team, How to build a good team? Conflict: Introduction to Conflict, Causes of Conflict, Management Managing Conflict.

Unit IV

Time Management: Time as a Resource, Identify Important Time Wasters, Individual Time Management Styles, Techniques for better Time Management.

Motivation: Introduction to Motivation, Relevance and types of Motivation, Motivating the subordinates, Analysis of Motivation.

Suggested reading

- E.Berne, Games People Play, Grove Press Inc., 1964; Penguin, 1968.
- Hargreaves, G. Stress Management, Marshall Publishing, London 1998
- Barker D, TA and Training, Gower Publishing Company Ltd., 1982.
- Jongewardm D & Seyer P C, Choosing Success, John Wiley & Sons Inc.1978
- Arnold, JHC Feldman, D.C. Organizational Behaviour IRWIN/McGRAW-HILL 1986
- Chandan, J.S., Organizational Behaviour. Vikas Publishing House PVT LTD 1994
- Statt, D.A. Using Psychology in Management Training, Taylor and Francis Inc.2000
- Luthans F., Organisational Behaviour, IRWIN/McGRAW-HILL 1998

B23-BS	C-102			Introduc	ction to Electrom	agnetic Theory			
L		T	P	Credit	End	Internal	Total	Time	
					Semester	Assessment			
					Exam				
3	3 1		-	4	70	30	100	3h	
Purpose	To int	roduce the fu	ndamentals of	f electromag	gnetic theory to t	the students for app	lications in	Engineering	
	field.								
				Course	Outcomes				
CO 1	Introd	uce the basic o	concepts of Ele	ectrostatics	in vacuum.				
CO 2	Introd	ntroduce the basic concepts of Magnetostatics in vacuum.							
CO 3	Discus	Discuss electrostatics and magnetostatics in linear dielectric medium.							
CO 4	Basics	of Maxwell's	equations and	electromag	netic waves.				

Unit - I

Electrostatics in Vacuum: Calculation of Electric Field: Coulomb's law, Continuous charge distribution; Divergence and Curl of Electrostatic Fields: Field lines, flux, Gauss's law, Applications of Gauss's law; Electrostatic Potential: Comments on potential, Poisson's and Laplace's Equation, the potential of a localized charge distribution; Electrostatic Boundary Conditions; Work and Energy in Electrostatics: the work done to move a charge, the energy of a point and continuous charge distribution, Conductors: basic properties, induced charges.

Unit - II

Electrostatics in a Linear Dielectric Medium: Polarization: dielectrics, induced dipoles, alignments of polar molecules; The field of a Polarized Object: bound charges and its physical interpretation; The Filed Inside a Dielectric; The Electric Displacement: Gauss's law in the presence of dielectrics, A deceptive parallel, Boundary conditions; Linear Dielectrics: Susceptibility, Permittivity, dielectric constant, Boundary value problems with linear dielectrics, Energy in dielectric systems, Forces in dielectrics.

Unit - III

Magnetostatics: The Lorentz Force Law: magnetic fields, magnetic forces, currents; Biot- Savart law, Divergence and Curl of magnetic filed, Magnetic Vector Potential: vector potential, magnetostatic boundary conditions, multiple expansion of vector potential.

Magnetostatics in a linear magnetic: Magnetization: Effect of magnetic field on atomic orbits; The Field of a Magnetized Object: Bound currents, Physical interpretation of bound currents; The Auxiliary Magnetic Field: Ampere's law in magnetized materials, A deceptive parallel, Boundary conditions; Linear and Nonlinear Media: magnetic susceptibility and permeability, ferromagnetism.

Unit - IV

Faraday's law: Electromotive Force: Ohm's law, Motional emf; Electromagnetic Induction: Faraday's law, The inducedelectric field, inductance, energy in magnetic fields.

Maxwell's Equations: Electrodynamics before Maxwell, How Maxwell fixed Ampere's law, Maxwell's equations, Maxwell's equations in matter.

Electromagnetic Waves: Electromagnetic Waves in Vacuum: the wave equation for electric and magnetic field; Electromagnetic Waves in Matter: propagation in linear media, Basic concepts of wave guide, Coaxial cables.

Suggested Books:

- 1. David J. Griffiths, Introduction to Electrodynamics, Pearson Education.
- 2. Halliday and Resnick, Physics
- 3. W. Saslow, Electricity, Magnetism and Light
- 4. Bhattacharya & Nag, Engineering Physics

B23-BSC-1	12			Electromagnetic	Lab				
L	T	P	Credit	Practical Exam	Internal Assessment	Total	Time		
-	-	- 2 1 60 40							
Purpose	To acquain	t the students	with the basic	phenomenon relat	ed to Electromagneti	c Theory.			
			Cours	se Outcomes					
CO1	To make the stud	make the students familiar with the experiments related with electromagnetism.							
CO2	To understand the basic concepts related to electromagnetic induction								

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee'sapparatus.
- 2. To study induced e.m.f. as a function of velocity of magnet.
- 3. To study the growth and decay of current in a LR circuit using magnetic core inductor.
- 4. To find the coefficient of self-inductance by Rayleigh's method.
- 5. To find the coefficient of mutual inductance of two coils.
- 6. To determine the magnetic induction field between the pole pieces of an electromagnet.
- 7. To study Bio-Savart's law.
- 8. To study the dependency of magnetic field on coil diameter and number of turns.
- 9. To investigate the equipotential liens of electric fields.
- 10. To draw the equipotential lines of bar electrode.
- 11. To draw the equipotential lines for ring electrode.
- 12. Verification of Farady and Lenz's law of induction by measuring the induced voltage as function of time.
- 13. Measurement of induced voltage impulse as a function of the velocity of magnet.
- 14. To determine the dielectric constant of different dielectric materials.
- 15. To measure the spatial distribution of the magnetic field between a pair of identical coils in Helmholtzarrangement.
- 16. To investigate the spacing between coils at which magnetic field is uniform and to measure its spatial distribution.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, PragatiPrakashan.

B23-ESC-											
102	ENG	INEERING	GRAPHICS	S AND DES	IGN (B. Tech	n. Semeste	r-I/II)				
Lecture	Tutorial	Practical	Credit	End Semester Exam	Internal Assessment	Total	Time (Hrs.)				
1	-	1	1	70	30	100	3				
Purpose	To draw and	To draw and interpret various projections of 1D, 2D and 3D objects.									
To understand the basics of AUTOCAD and perform exercises.											
			Course C	Outcomes							
CO 1	Students will	l be able to d	raw the proje	ections of po	ints and straig	tht lines					
CO 2	Students was	ill be able to	o understand	and draw t	he projection	s of plane	s and regular				
CO 3	Students will be able to understand the sectioning of solids and development of surfaces.										
CO 4	Students wi used in AU		draw the iso	metric projec	ctions and kno	ow differer	nt commands				

UNIT-I

Introduction, Projection of Points:

Introduction to Engineering Equipment's, Elements of Engineering Drawing, Types of Lines, Various types of projections, First and third angle systems of orthographic projections. Projections of points in different quadrants.

Projections of straight lines – parallel to one or both reference planes, contained by one or both planes, perpendicular to one of the planes, inclined to one plane but parallel to the other plane, inclined to both the planes, true length of a line and its inclinations with reference planes, traces of a line.

UNIT-II

Projection of planes:

Introduction, types of planes, Projection of planes by change of position method only, projection of plane perpendicular to a plane, with axis parallel to both planes, with axis parallel to one plane and inclined to the other plane.

Projection of Regular Solids:

Types of solids, Projections of Polyhedra Solids and Solids of Revolution – in simple positions with axis perpendicular to a plane, with axis parallel to both planes, with axis parallel to one plane and inclined to the other.

UNIT-III

Sections and Sectional Views of Right Regular Solids:

Sectional views of simple right regular solids like prism, pyramid, Cylinder and Cone.

Development of Surfaces:

Development of surfaces of Right Regular Solids-Prism, Pyramid, Cylinder and Cone;

UNIT-IV

Isometric/Orthographic Projections and CAD commands:

Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions;

Solid works basics; Basic Commands: Line, Point, Rectangle, Polygon, Circle, Arc, Ellipse, Polyline

Basic editing Commands: Extrude Bose, Revolve Bose, Copy, Offset, Fillet, Chamfer, Trim, Extend, Mirror Display Commands: Zoom, Pan, Redraw, and Regenerate Simple dimensioning and text, simple exercises.

Text Book

- 1. Engineering Graphics using AUTOCAD 2000: T. Jeyapoovan, Vikas Publishing House.
- 2. Machine Drawing: Dr Basudeb Bhattacharyya, Oxford University Press, New Delhi

Reference Books

- 1. Engineering Drawing: Amar Pathak, Dreamtech Press, New Delhi.
- 2. Engineering Drawing: Plane and Solid Geometry: N.D. Bhatt and V.M. Panchal, Charotar Publishing House.
- 3. Thomas E. French, Charles J. Vierck, Robert J. Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.
- 4. Engineering Graphics and Drafting: P.S. Gill, Millennium Edition, S.K. Katariaand Sons.
- 5. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.

B23-ESC-										
106		Engineer	ing Graph	ics and De	esign Lab (B.	Tech. Sem	ester-I/II)			
Lecture	Tutorial	Practical	Credit	End Semester Exam	Internal Assessment	Practical Exam	Total	Time (Hrs.)		
0	0	4	2	0	40	60	100	3		
	exposure to the visual aspects of engineering design.									
	•			<u>Outcomes</u>						
CO 1	Students software.		le to under	stand the	user interfac	ce and tool	lboxes in So	olidworks		
CO 2		Students will be able to customize settings of Solidworks software and produce 2D lrawings using Solidworks.								
CO 3		cudents will be able to practice & learn performing various operations in blidworks and create 3D designs.								
CO 4	Students	will be ab	le to make	assembly	and create a	simple des	sign projec	t.		

Module 1: Overview of SolidWorks:

Listing the computer technologies that impact on graphical communication, Demonstrating Knowledge of the theory of SolidWorks software: the Menu Bar; the SOLIDWORKS Menus; Quick Access Tools; Command Manager; Feature Manager Design Tree; Heads-Up View Toolbar; Graphics Area; Task Pane; Status Bar; Quick Access Tools; The name of the currently open file; The search prompt (search Commands, Help, Files etc.); User login credentials; SOLIDWORKS Help; Application window options (minimize, maximize, close).

Module2: Customization & SolidWorks Drawing in 2D:

Setup of the drawing page and the printer, including scale settings, setting up of document units and drawing limits; ISO and ANSI standards for coordinate dimensioning and tolerancing; Orthographic constraints, Snap to objects manually and automatically; Trim entities; convert entities.

Sketch; Evaluate; SOLIDWORKS Add-Ins; Producing drawings by using various coordinate input entry methods to draw line, rectangle, circle, slots, arcs, conic sections, spline, polygons etc; smart dimensions; applying annotations to drawings; modifying various entities (viz line, rectangle, circle, slots, arcs, conic sections, spline, polygons etc.); 2D Fillet and chamfer; 2D mirror; linear sketch pattern.

Module3: Miscellaneous operations and 3D designs:

Drawing; Annotation; Sketch; Markup; Evaluate; SOLIDWORKS Add-Ins; Sheet Format; Features (or Assembly, in an Assembly file);

3D entities (boss and cuts): Extrude boss/base/cut, revolve boss/base/cut, swept boss/base/ cut, Lofted boss/base/cut, Boundary boss/base/cut; 3D Fillet and Chamfer; 3D mirror; 3D linear and circular patterns; reference geometry.

Module4: Assembly & creating a simple design project:

Drawing annotation, Solidworks modelling of parts and assemblies; Geometry and topology of engineered components: creation of engineering models and their presentation in standard 3D; Use of SolidWorks software for creating parts and assemblies: Wheel support assembly, V-Block assembly etc. Applying colour coding to parts and assemblies; meshed topologies for

engineering analysis and tool-path generation for component manufacture; geometric dimensioning and tolerancing

Text Book

- 1. Beginner's Guide to SOLIDWORKS 2021 Level II: Sheet Metal, Top Down Design, Weldments, Surfacing and Molds 1st Edition by <u>Alejandro Reyes</u>; SDC Publications; 1st edition (March 4, 2021).
- **2.** SOLIDWORKS 2021: A Step-By-Step Tutorial Guide for Beginners (Mixed Units) by SDCAD Academy.

Reference Books

- 1. SOLIDWORKS 2019: A Power Guide for Beginners and Intermediate User Paperback March 6, 2019 by CADArtifex, John Willis, Sandeep Dogra.
- 2. Solidworks for Beginners: Getting Started with Solidworks Learn by Doing New Edition 2018 Paperback October 8, 2018 by Arsath Natheem.

B23-ES	C-103		Basic I	Electrical and Ele	ctronics Engine	ering				
Lecture	Tutorial	Practical	Credit			Total	Exam Time			
				Exam	Assessment					
3	1	`-	100	3 Hour						
Course O	Course Outcomes									
CO 1	Deals w	ith DC net	works, AC f	undamentals & A	C response of F	RLC circ	uits.			
CO 2			ctory Balar -Phase Tra	nced Three Phase nsformer.	Power System	analysis	, magnetic			
CO 3	Explains the Basics of Electrical Machines (AC/DC).									
CO 4	Study of Introduction to Analog Electronics & Digital Electronics Fundamentals.									

UNIT-I

Review of D.C. circuits: Ohm's Law, junction, node, circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples. KVL, KCL, Nodal analysis, Star-Delta transformation of set of resistors.

DC Network Theorems: Superposition, Thevenin's, Norton's theorems in DC networks containing both voltage and current sources and Maximum power transfer theorem in a resistive network.

AC Fundamentals & AC Circuit: AC signal, Average and RMS values of sinusoidal AC, polar & rectangular form of representation phasor quantities. Addition & subtraction of two or more phasor sinusoidal quantities using the component resolution method. Steady-state AC response of R/L/C, RL, RC series ckts, P.F., active, reactive & apparent power. Qualitative analysis of Frequency response of series & parallel RLC circuit.

UNIT-II

Balanced 3-Phase AC Circuits: Advantages of 3-phase system, Star and Delta connections and their Line and Phase voltage/current relationships, three-phase power & its measurement using the 2-wattmeter method.

Single phase transformer (only qualitative analysis): MMF, Reluctance and flux flow in a magnetic circuit. Transformer: Principle – Construction - Emf equation - Phasor diagram and Equivalent Circuit, Losses in a transformer, Maximum efficiency condition, OC/SC Test & direct load test.

UNIT-III (Only Qualitative Analysis)

Principle of Dynamo for generation of AC. Relation between synchronous speed, number of field poles and frequency. Principle of motoring. Torque & Mechanical Power developed at a rotating shaft & B.H.P.

DC Machines: Constructional parts & principles of working of DC Machines, Generated and back EMF, Types of DC machines, Speed Control of DC shunt Motor, applications.

3-Phase Induction Motor: Basic working principle & construction of a 3- phase Induction motor, slip & advantages. Phase sequence and its importance.

Synchronous Machines: Basic principle of working of Alternator and synchronous motor.

UNIT-IV

Analog Electronics Basics (Only Qualitative Analysis): PN junction diode characteristics: forward and reverse bias, breakdown – barrier potential, Zener diode, Basic Rectifier circuits: half wave and full wave, Introduction to BJT: characteristics curve and region of operation.

Digital Fundamentals: Diode as a binary switch, decimal to binary number representation, addition subtraction and basic Boolean algebra, Basic Logic Gates with truth table.

Suggested Books:

- 1. Basic Electrical Engg: A complete Solution by Vijay Kumar Garg, Wiley India Ltd.
- 2. Electrical Engg. Fundamentals by Rajendra Prasad, PHI Pub.
- 3. Basic Electrical and Electronics Engg. by S.K. Sahdev, Dhanpat Rai & Co./Pearson.
- 4. A.K. Maini, Digital Electronics, Wiley India

Note: An approved question paper template is to be provided to the paper setter.

B23-ESC-1	08											
		Basic Elec	ctrical a	and Elect	ronic	s Engineering	Lab					
L	Т	Practical	Credit	Intern	ıal	Practical Ex	am	Total	Exam Time			
				Assessment								
-	•	2	1	40		60		100	3 Hrs			
Purpose	To f	amiliarize	the s	tudents	with	introductory	Elec	trical	& Electronics			
	Engi	ngineering practicals.										
		Course Outcomes										
CO1	De	als with va	arious C	C netwo	rk the	eorems to ana	lyse l	inear d	circuits. Deals			
	wit	h the ste	ady-sta	ite frequ	ency	response of	RLC	circu	it parameters			
	sol	ution tech	niques									
CO 2	De	als with i	ntrodu	ctory Sir	ngle-F	hase Transfo	rmer	& 3	phase power			
	me	asuremen	t practi	cals								
CO 3	De	als with th	e introd	luctory pr	ractic	als of various t	ypes	of mo	tors.			
	De	als with	various	introdu	ctory	experiments	w.r.	t Anal	og & Digital			
CO 4	Ele	ctronics.										

LIST OF EXPERIMENTS LIST-I

- 1. To verify KVL and KCL.
- 2. To verify the Superposition theorem on a linear circuit with at least one voltage & one current source.
- 3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source.
- 4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.
- 5. To study frequency response characteristics of a series R-L-C circuit on CRO and determine BW, resonant frequency & maximum current.
- 6. To study frequency response characteristics of a parallel R-L-C circuit on CRO and determine resonant frequency & minimum current.
- 7. To perform O.C. and S.C. tests on a single-phase transformer.
- 8. To perform a direct load test on a single-phase transformer and plot load v/s efficiency characteristics.
- 9. Measurement of power of a 3-phase balanced load by two-wattmeter method.
- 10. To perform speed control of the DC shunt motor.
- 11. To study cut-section models of various generators and motors.
- 12. To perform starting & reversal of direction of a three-phase induction motor.
- 13. Starting and running of a 3-phase synchronous motor.
- 14. To study various Safety measures: Need of Earthing, prevention & precautions against electric shock and electric hazards, shock treatment. General Precautions followed in performing practicals in BEEE Lab.

LIST-II

- 15. To study the VI characteristics of the p-n diode in forward and reverse bias and find the threshold voltage from the VI curve.
- 16. To study the operation of half-wave and full-wave rectifiers and observe the output waveform.
- 17. To experimentally plot the input and output characteristics of a given BJT transistor in CE/CB/CC configuration.
- 18. Study and realization of Logic gates AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR (any four).

Note: At least 7 experiments from the List - I & 2 experiments from the List -II to be performed during the semester.

B23-		IDEA WORKSHOP											
VAC-													
102													
Lecture	Tutorial	Practical	Credit	End Semester	Internal	Total	Exam Time						
				Exam	assessment								
2	-	- `- 1 100 100 3 Hour											
	Course Outcomes												
CO 1	Student wil	l be familiari	zed with	different types of	f electronic compo	nents an	d basic concepts						
	of soldering	g. classificati	on and co	omponent mounti	ng techniques of F	PCB.							
CO 2	Student wil	l be able to u	nderstan	d classification ar	nd component mou	inting te	chniques of PCB.						
CO 3	Students will be able to understand common mistakes and their debugging during PCB												
	designing Students will be able to design PCB using Autodesk Eagle.												
CO 4	Students wi	ill be able to	understaı	nd 3D printing an	d its prototypes.								

Unit -I

Electronic component familiarization, Understanding electronic system design flow. Familiarization and use of basic measurement instruments - DSO including various triggering modes, DSO probes, DMM, LCR bridge, Signal and function generator. Soldering using soldering iron/station.

Unit-II

Introduction to PCB: PCB Classifications: Based on Number of copper layers, Thickness of copper layer, Substrate material, Different layers of PCB, Mounting techniques of components on PCB, Keywords Used in PCB Design and their Description, Methods of grounding in PCB. Common electronics components and devices used in PCB design.

Unit-III

Common mistakes made during PCB designing. Inspection testing procedures to ensure the quality of PCB. Internationally accepted standards for PCB design and manufacturing, Complete steps for designing PCB. PCB design using Autodesk Eagle.

Unit-IV

3D printing and prototyping technology – 3D printing using FDM, SLS and SLA. Basics of 3D, scanning, point cloud data generation for reverse engineering, Prototyping using subtractive cutting processes, 2D and 3D Structures for prototype building using Laser cutter and CNC routers.

Books and references:

- 1) Make Your Own PCBs with EAGLE: From Schematic Designs to Finished Boards, 2nd Edition by <u>Dr. Simon Monk</u>, <u>Duncan Amos</u>, ISBN: 9781260019193, Publication Date & Copyright: 2017 McGraw-Hill Education.
- 2) Designing Circuit Boards with EAGLE(Make High-Quality PCBs at Low Cost) Binding: Paperback Author: MatthewScarpino Publisher: PrenticeHall.
- 3) Introduction to Photovoltaic System Design by John R. Balfour, Released November 2011 Publisher(s): Jones & Bartlett Learning, ISBN: 9781449624682.
- 3D Printing & Design, Dr. Sabrie Soloman, ISBN: 978-9386173768, Khanna Book Publishing Company, New Delhi.

B23- VAC-104				IDEA W	ORKSHOP L	AB		
Lecture	Tutorial	Practical	Credit	End Semester Exam	Internal assessment	Practical Exam	Total	Exam Time
-	-	3	1		100		100	3 Hour

List of Experiments:

- 1. Familiarization with electronic components like diodes and transistors, MOSFETS.
- 2. Familiarization with DSO and function generator.
- 3. Familiarization with soldering.
- 4. Schematic diagram of PCB designing using Autodesk Eagle.
- 5. Routing of components on PCB using Autodesk Eagle.
- 6. Designing of double layer PCB using Autodesk Eagle.
- 7. To study 3D printer and develop a 3D model of real object using 3 D printer.
- 8. To study 3D scanner and create a 3D model using 3D scanner.

 To perform 2D profile cutting of press fit box/casing in acrylic (3 or 6 mm thickness)/cardboard,

 MDF (2 mm) board using laser cutter & engraver.

B23-BSC-105				Chemistry						
L	Т	Р	Credit	End Semester Exam	Internal Assesment	Total	Time			
3	1	0	4	70	30	100	3h			
Purpose				phenomenon/ try and Engine	concepts of cleering field	hemistry, the	student faces			
CO1	An insight is	nto atomic a	nd molecula	r orbitals and	l bonding in 1	molecules				
CO2	Knowledge molecules	Knowledge of basic concept of spectroscopic techniques for identification of nolecules								
CO3	To understa	To understand basics of thermodynamics and periodic properties								
CO4	To understa	nd basics of	stereochemi	stry and vari	ous organic r	eactions				

UNIT -I

Molecular orbitals of diatomic molecules. Equations for atomic and molecular orbitals. Energy level diagrams of diatomic molecules (O₂, N₂, CO, NO, CN, HCl and HF). Pi-molecular orbitals of butadiene. Concept of aromaticity. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

UNIT-II

Spectroscopic techniques and applications: Principles of spectroscopy and selection rules. Electronic spectroscopy. Fluorescence and its applications in medicine. Vibrational spectroscopy and its applications. Nuclear magnetic resonance and magnetic resonance imaging, surface characterization techniques. Diffraction and scattering.

UNIT-III

Ionic, dipolar and van Der Waals interactions. Equations of state of real gases and critical phenomena. Thermodynamic functions: Internal energy, entropy and free energy. Estimations of entropy and free energies. Free energy and EMF. Cell potentials, the Nernst equation and its applications. Periodic properties - Effective nuclear charge, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries of CCl₄, PCl₅, H₂O, NH₃, SF₆, IF₇ (as per VSEPR theory). Hard soft acids and bases.

UNIT-IV

Stereochemistry: Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis (Ethane, Butane and cyclohexane).

Organic reactions: Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings.

Text/Reference Books:

- 1. AICTE's Prescribed Textbook: Chemistry I with Lab Manual, Khanna Book Publishing.
- 2. Engineering Chemistry, by Manisha Agrawal.
- 3. University chemistry, by B. H. Mahan.
- 4. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane.
- 5. Fundamentals of Molecular Spectroscopy, by C. N. Banwell.
- 6. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan. AICTE Model Curriculum for UG Degree Course in Computer Science and Engineering 54
- 7. Physical Chemistry, by P. W. Atkins.

B23-BSC	-109			A	APPLIED MATHEMATICS-I redit End Internal Total Time							
L		Т	P	Credit	End	Internal	Total	Time				
					Semester	Assessment						
					Exam							
3		1	-	4	70	30	100	3 h				
Purpos	se	This o	course ain	ns to acqua	int Biotechno	logy Engineer	s with fu	ndamental concepts				
and tools in Limit, Continuity, Differential & Integral Calculus, and Complex												
		Numb	ers, enab	ling them	to progressive	ely develop the	eir mathe	ematical proficiency				
		for ta	ckling ad	vanced ma	thematical pr	inciples and a	pplicatio	ns relevant to their				
field.												
				Co	urse Outcom	es						
CO1	To i	ntroduc	e the id	ea of sets,	relations, fu	unctions, trigo	nometric	functions, inverse				
	trigo	nometri	c function	ons, these	concepts are	e prerequisite	to lear	n the concepts of				
	differ	rentiatio	on and int	egration.								
CO 2	To in	troduce	the Con	nplex numb	ers which is	fundamental to	solve ar	y kind of quadratic				
	equat	tions, I	Limit is	preconditio	n to underst	and the conc	ept of r	ate of change and				
	deriv	ative.										
CO 3	To d	evelop	the esser	ntial tool o	f Continuity	and Differenti	ability no	eeded in evaluating				
	highe	er order	derivativ	es of functi	ons.		-	_				
CO 4	To introduce the tools of Indefinite and Definite integrals of functions in a comprehensive											
						ling engineerin		-				
UNIT-I					-			(10 h				

DDI IED MARIEMARIOCI

Sets, Relations, Functions

DA2 DCC 100

Sets and its types: Operations on sets, complement of a set, Cartesian Product of sets, relations, functions, types of functions, Trigonometric functions: Introduction, Trigonometric functions, Trigonometric functions of sum and difference of two angles, Trigonometric equations, Inverse Trigonometric functions: Introduction, basic concepts and its properties.

UNIT-II (10 hrs)

Pre-Calculus

Complex Numbers: Introduction, Algebra of Complex Numbers, Modulus and the conjugate of a complex number, quadratic equations,

Limits and Derivatives: Introduction, Limits, Limits of Trigonometric Functions, Derivatives (single variable).

UNIT-III (10 hrs)

Differential Calculus

Continuity and Differentiability: Introduction, Continuity, Differentiability, Exponential and Logarithmic functions, Logarithmic differentiation, Derivatives of functions in parametric forms, second order derivatives, Application of Derivatives (single variable): Increasing and decreasing functions, Maxima and Minima.

UNIT-IV (10 hrs)

Integral Calculus

Integrals: Introduction, Integration as an Inverse process of Differentiation, Method of Integration, Integration by Partial Fractions, Integration by Parts, Definite Integrals: Fundamental theorem of Calculus, Evaluation of Definite Integrals by Substitution, properties of Definite Integrals.

Suggested Books:

- 1. G. B. Thomas, R. L. Finney: Calculus and Analytic Geometry, Pearson Education.
- 2. Mathematics Textbook for Class 11th & 12th by NCERT.
- 3. Howard Anton: Calculus, Wiley Publication.
- 4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 2023

B23-BS	C-103				Applied Physics					
L		T		Credit End Semester Exam		Internal Assessment	Total	Time		
3	1 - 4 70 30 100 3h									
Purpose	To intr	oduce the bas	ics of physics to	the students	for applications	in Engineering field.				
				Cours	se Outcomes					
CO 1	In	troduce the	fundamental	s of inter	ference and di	ffraction and thei	r applica	tions.		
CO 2	To	make the	students awar	e of the i	mportance of p	polarization and U	Iltrasoni	cs.		
CO 3	In	Introduce the basics concepts of laser and its applications.								
CO 4	To) familiariz	e with concept	ts of nucl	ear radiations	and its biological	effects.			

Unit I

Interference: Principle of Superposition, Conditions for interference, Division of wave-front: Fresnel's Biprism and Applications, Division of amplitude: Wedge-shaped film, Newton's rings and Applications, Michelson Interferometer and Applications.

Diffraction: Types of diffraction, Fraunhofer diffraction at a single slit, Intensity distribution due diffraction grating, determination of wavelength; Dispersive power and resolving power of diffraction grating.

Unit II

Polarization: Polarization of transverse waves, Plane of polarization, Polarization by reflection, Double refraction, Nicol Prism, Quarter and half wave plate, Specific Rotation, Laurent 's half shade polarimeter, Biquartz polarimeter.

Ultrasonics: Ultrasonic waves, Properties of ultrasonic waves, Production of ultrasonic waves: Magnetostriction and Piezoelectric methods, Detection of ultrasonic waves, Measurement of velocity of ultrasonic waves, Applications of ultrasonic waves.

Unit III

Laser: Einstein's theory of matter radiation interaction and A and B coefficients; amplification of light by population inversion, different types of lasers: gas lasers (He-Ne, CO₂), solid-state lasers (ruby, Neodymium), dye lasers; Properties of laser beams: mono-chromaticity, coherence, directionality and brightness, laser speckles, applications of lasers in science, engineering and medicine.

Unit IV

Nuclear radiations and its Biological Effects: Classification of nuclear radiations, Interaction of charged particle (light and heavy) and gamma radiations with matter (basic concepts), Dosimetric units, Relative Biological Effectiveness (RBE), Typical doses from commons sources in the environment, Biological Effects, Maximum Permissible Dose, (MPD), Shielding, Radiation safety in the nuclear radiation laboratory.

Biomaterials: Introduction, Classification of biomaterials, Applications.

Suggested Books:

- 1. Applied Physics for Engineers, Wiley India Pvt. Ltd.
- 2. Concepts of Modern Physics (5th edition), Tata McGraw-Hill Publishing Company Limited.
- 3. A Textbook of Optics, S. Chand & Company Ltd.
- 4. Techniques for Nuclear and Particle Physics Experiments: A How-to Approach, Springer-Verlag.
- 5. Introduction to Nuclear and Particle Physics, PHI Learning Private Limited.
- 6. Biomaterials: The intersection of Biology and Materials Science, Pearson, New Delhi.

B23-BSC-	113		Applied Physics Lab										
L	L T				Practical Exam	Internal Assessment	Total	Time					
-			2	1	60	40	100	3h					
Purpose	Purpose To impart the knowledge of basic concepts of Physics in Engineering.												
	Course Outcomes												
CO1	To n	nake the st	tudents fam	iliar with the ex	periments related	with interference and	diffraction	•					
CO2	To u	nderstand	the basic p	henomenon of p	olarization and ult	rasonic							
CO3		mpart the hods	practical k	nowledge of the	e experiments rela	ted with resistance u	sing differe	nt					

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To find the wavelength of monochromatic light by Newton's ring experiment.
- 2. To find the wavelength of sodium light by Michelson's interferometer.
- 3. To find the resolving power of telescope.
- 4. To find the wavelength of sodium light using Fresnel bi-prism.
- 5. To find the wavelength of various colours of white light with the help of plane transmission diffraction grating.
- 6. To find the specific rotation of sugar solution by using a Polarimeter.
- 7. To find the frequency of ultrasonic waves by piezoelectric methods
- 8. To verify Newton's formula and hence to find the focal length of the given convex lens.
- 9. To find the frequency of A.C. mains by using Sonometer and horse shoe magnet.
- 10. To find the resistance of a galvanometer by post office box.
- 11. To find low resistance by Carrey-Foster bridge.
- 12. To find the value of high resistance by substitution method.
- 13. To compare the capacitances of two capacitors by De-Sauty's bridge and hence to find the dielectric constant of a medium.
- 14. To convert a galvanometer into an ammeter of desired range and verify the same.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, Pragati Prakashan.

B23-BS	C-110		APPLIED MATHEMATICS-II										
L		T	P	Credit	End	Internal	Total	Time					
					Semester	Assessment							
					Exam								
3		1 - 4 70 30 100 3 h											
Purpo	ose	This cou	rse aims to	equip the	students wit	h standard conc	epts and tools	that will					
		serve the	em well t	owards tacl	kling more	advanced level	of mathemat	ics while					
		familiariz	zing them	with essen	tial tool of	linear algebra,	solution of di	ifferential					
		equation,	utility of	higher order	r derivatives	in engineering of	domain. More	precisely,					
		the objec	tives are a	s under:									
				Course	Outcomes								
CO1	To in	troduce the	e essential	tool of mat	trices and lin	ear algebra in a	comprehensiv	e manner					
	to sol	ve the larg	e system o	f linear equ	ations.	_	_						
CO 2	To in	troduce e	ffective m	athematical	tools for t	he solutions of	first order di	ifferential					
	equat	ions that m	nodel phys	ical process	es.								
CO 3	To de	velop the	way to sol	ve the ordinate	ary differenti	al equation with	higher orders.						
CO 4	To ex	tend some	concept o	f differentia	l calculus for	r more than one	variables.						
UNIT-I	•		*					(10 Hrs)					

Linear Algebra:

Introduction to matrices, its types, algebraic operations, transpose, determinant, minors and adjoint of a matrix. Elementary transformations, Inverse of a square matrix: Cramer's rule, Rank of a matrix, elementary matrices, Gauss Jordon method to find inverse using elementary transformations.

System of Linear equations: General representation, Homogeneous and Non-homogeneous system of linear equations, Consistency of linear system of equations, Gauss Elimination method to solve the system of linear equations.

UNIT-II (10 Hrs)

First order Ordinary differential equations:

Introduction, order and degree of the differential equation, Formation of differential equation, Solution of the differential equation with variables separable and differential equations reducible to variable separable form, exact differential equation, and equations reducible to exact differential equations, linear and Bernoulli's equations.

UNIT-III (10 hrs)

Ordinary differential equations of higher orders

Introduction, complementary function, particular integrals, solution of second and third order linear differential equations with constant coefficients.

UNIT-IV (10 hrs)

Multivariable Calculus:

Partial derivatives, Total differential, Chain rule for differentiation, Partial derivatives of higher orders, Homogeneous functions, Euler's theorem on homogeneous functions, differentiation of an implicit function, Jacobian, Maxima and minima of a function of two variables, Lagrange's method of undetermined multipliers.

Suggested Books:

- 1. G. B. Thomas, R. L. Finney: Calculus and Analytic Geometry, Pearson Education.
- 2. H. Anton, Irl C Bivens, Stephen Davis: Calculus 10th Edition, John Wiley & Sons.
- 3. E. Kreyszig: Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 4. E. Kreyszig and S. Ahuja, Applied Mathematics-II, Wiley India Publication, Reprint 2015.
- 5. Srimanta Pal and Subodh C. Bhunia, Engineering Mathematics, Oxford University Press.
- 6. Mathematics Textbook for Class 11th & 12th by NCERT.
- 7. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 2023

B23-VAC-106	Idea Work	Idea Workshop (B.Tech. Biotechnology) Semester II									
Lecture	Tutorial Practical C		Credit	End	Internal	Total	Time				
				Semester	Assessment						
				Exam							
2	-	-	1	-	100	100	3 Hrs.				
Purpose	To familiarize the students with various aspects of Biotechnology										
			Course or	utcomes							
CO1	Student to	learn about	scope and	different tech	niques of Biot	echnolog	gy				
CO2	To learn tl	ne methods o	of fermenta	tion, bioproc	essing and foo	d preserv	vation .				
CO3	To learn tl	he Techniqu	es of Plant,	Animal cultu	ire and Nanote	echnolog	y.				
CO4	Student w	ill learn abo	ut Ethics an	d application	ns of Biotechno	ology	_				

Unit 1: Introduction to Biotechnology

Overview of biotechnology, Scope of Biotechnology and Future Prospects Introduction to Laboratory safety, Sterilization and Basic Lab Techniques.

Unit 2: Microbiology, Food Technology and Bioprocessing

Introduction to Microbiology and Aseptic techniques.

Introduction to Fermentation Technology and Bioreactor design.

Brief Introduction of Upstream and Downstream processing. Introduction to Food Spoilage and Food Preservation Techniques

Unit 3: Plant, Animal Biotechnology, Nanotechnology and Ethics

A Brief Introduction to Plant and Animal Culture Techniques

Introduction to Nanotechnology and Computational Biology

Introduction to IPR and Ethics in Biotechnology.

Unit 4: Biotechnology Applications

Basic Concepts of Biofuel, Biopesticides, Biofertilizers and Biogas.

Bioremediation, Composting and Vermicomposting Segregation and disposal of Bio waste

Neutraceuticals and Drug Dosage Forms

Reference/Text Books:

- 1. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. (1993) Tata McGraw Hill, New Delhi.
- 2. Microbiology 5th Edition. Prescott, L.M.; Harley, J.P. and Klein, D.A.(2003) McGraw Hill, USA.
- 3. Foods: Facts and Principles. (2012) N. Shakuntala Manay and M. Shadakshara Swami. New Age International (P) Ltd, Publishers .
- 4. Environmental Biotechnology. Jogland, S.N. (1995) Himalaya Publishing House, New Delhi.
- 5. Environmental Biotechnology: Bhattacharya and Banerjee (2007) Oxford University Press.

B23-VAC-108	Idea V	Idea Workshop Lab (B.Tech. Biotechnology) Semester II										
Lecture	Tutorial	Practical	Credit	End Semester Exam	Internal Assessment	Total	Time					
-	-	4	1	-	100	100	3 Hrs.					
Purpose	To familiarize the students with various aspects of Biotechnology											
			Course of	outcomes								
CO1	Student to	learn about d	lifferent equ	ipments and to	echniques of Bio	technolog	зу					
CO2	To learn th	e methods of	fermentation	on and fermen	tor used .							
CO3	To learn th	e methods of	adulteratio	n testing in mi	lk and samples.							
CO4	To learn the methods of adulteration testing in milk and samples. Student will learn about waste water treatment and testing methods and will perform some healthcare experiments.											

- 1. Study of different biotechnology instruments in laboratories.
- 2. Study of fermenter and its components.
- 3. Isolation and identification of industrially important microorganisms.
- 4. Preparation of Basal Medium.
- 5. Microbial culturing techniques and staining methods.6. Testing of various parameters of water/waste water/soil samples.
- 7. Food Adulteration Testing of milk and different food products.
- 8. Plant and Animal Tissue culture Techniques
- 9. Phytochemical activity of medicinal plants parts.
- 10. Computer aided drug/ pesticide design using bioinformatics tools.
- 11. Testing of Blood group and haemoglobin in blood samples.
- 12. Good manufacturing and Laboratory Practices.

Note: Collaboration with Industry/Institute for novel projects/ideas.

Text Books:

- 1. Microbiology- A laboratory manual. 4th edition. Cappuccino J. and Sheeman N. (2000) Addison Wesley, California.
- 2. Environmental Microbiology A Laboratory Manual Pepper. I.L.; Gerba, C.P. and Brendecke, J.W.(1995) Academic Press, New York.
- 3. Experiments in Microbiology, Plant Pathology and Biotechnology. 4th Edition. Aneja, K.R. (2003) w Age International Publishers, New Delhi.
- 4. Manual of Industrial Microbiology and Biotechnology. 2nd Edition. Ed. Arnold L. Demain and Julian E. Davies (1999) ASM Press Washington D.C.

B23-BSC	-101			Sen	niconductor	Physics				
L		T	P		End Semester Exam	Internal Assessment	Total	Time		
3		1	-	4	70	30	100	3h		
Purpose	To introduce the fundamentals of solid state physics and its applications to the students.									
				Course O	utcomes					
CO1	To m	ake the studen	ts aware of basic t	erminology	of crystal st	ructure.				
CO 2		Introduce the elementary quantum mechanics, which will be useful in understanding the concepts of solid state physics.								
CO 3	Discu	Discussion of classical free electron theory, quantum theory and Band theory of solids.								
CO 4	Basic	s and applicat	ions of semicondu	ctors.						

Unit - I

Crystal Structure: Crystalline and Amorphous solids, Crystal Structure: lattice translation vector, symmetry operations, space lattice, basis; Unit cell and Primitive cell, Fundamental types of lattices: two-dimensional and three dimensional Bravais lattices; Characteristics of Unit cells: Simple Cubic (SC), Body Centred Cubic (BCC), Face Centred Cubic (FCC), Hexagonal Close Packed (HCP) structure; Simple crystal structures: Sodium Chloride, Cesium Chloride, Diamond, Cubic Zinc Sulfide; Miller Indices, Bonding in Solids, Point defects in crystals: Schottky and Frenkel defects.

Unit - Il

Quantum Theory: Need and origin of Quantum concept, Wave-particle duality, Phase velocity and group velocity, Uncertainty Principle and Applications; Schrodinger's wave equation: time-dependent and time –independent; Physical Significance of wave function $\overline{}$.

Unit – III

Free Electron Theory: Classical free electron theory: electrical conductivity in metals, thermal conductivity in metals, Wiedemann-Franz law, success and drawbacks of free electron theory; Quantum free electron theory: wave function, eigen values; Fermi-Dirac distribution function, Density of states, Fermi energy and its importance.

Band theory of Solids: Bloch theorem, Kronig-Penney Model (qualitative), E versus k diagram, Brillouin Zones, Concept of effective mass of electron, Energy levels and energy bands, Distinction between metals, insulators and semiconductors, Hall effect and its Applications.

Unit –IV

Semiconductors: Conduction in Semiconductors, Intrinsic Semiconductors: Conductivity of charge carriers, Carrier concentration in intrinsic semiconductors; Extrinsic Semiconductors: n-type semiconductors, p-type semiconductors, charge carrier concentration in extrinsic semiconductors.

Semiconductor Devices: The p-n junction diode, Current-voltage characteristics of p-n junction; Half wave and full wave rectifier, The Transistor: NPN and PNP transistor, Basic configuration in common emitter, common base and common collector; Metal-Semiconductor Junction (Ohmic and Schottky).

Suggested Books:

- 1. Applied Physics for Engineers, Wiley India Pvt. Ltd.
- 2. Introduction to Solid State Physics, John Wiley & Sons. .
- 3. Concepts of Modern Physics (5th edition), Tata McGraw-Hill Publishing Company Limited.
- 4. Solid State Physics, New Age International (P) Limited.
- 5. A Textbook of Quantum Mechanics, McGraw Hill Education (India) Private Limited. Introduction to Nanotechnology, John Wiley & Sons.

B23-BSC	:-111		Semiconductor Physics Lab									
L		T	T P Credit Practical Intern Exam Assessm				Total	Time				
- 2 1 60		40	100	3h								
Purpo	rpose To acquaint the students with the basic phenomenon/concepts of solid state physics.											
				Co	ourse Outcomes							
CO1	CO1 To make the students familiar with the basic phenomenon using practical aspects related with Semiconductor Physics.											
CO2	To in solid	• •	actical knov	vledge of the	e experiments rela	ated with quantum	theory and Ba	nd theory of				

Note: Student will be required to perform at least 10 experiments out of the following list.

- 1. To study the I-V characteristics of a p-n diode.
- 2. To find the value of Hall Coefficient of semiconductor.
- 3. To find the value of e/m for electrons by Helical method.
- 4. To find the band gap of intrinsic semiconductor using four probe method.
- 5. To find the flashing and quenching potential of Argon and to find the capacitance of unknown capacitor.
- 6. To find the value of Planck's constant by using photoelectric cell.
- 7. To find the temperature coefficient of resistance by using Pt resistance thermometer by post office box.
- 8. To find the ionization potential of Argon/Mercury using a thyratron tube.
- 9. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee'sapparatus.
- 10. To study the characteristics of (Cu-Fe, Cu-Constantan) thermocouple.
- 11. To calculate the hysteresis loss by tracing a B-H curve.
- 12. To find the frequency of ultrasonic waves by piezoelectric methods.
- 13. To verify Richardson thermionic equation.
- 14. To realize half wave and full wave diode rectifier using CRO.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, PragatiPrakashan.

B23-EC	S-104			Basic Electrica	cal Engineering					
Lecture	Tutorial	Practical	Exam			Total	Exam Time			
3	1	`-	4	70	30	100	3 Hour			
Course O	Course Outcomes									
CO 1		with the rese linear cir		introductory to	pics and DC n	etwork th	eorems to			
CO 2	Deals	with AC fu	ndamenta	als & AC respon	se of RLC circu	uit combir	nations.			
CO 3	·									
CO 4	Expla	ins the Bas	ics of Ele	ctrical Machine	s (AC/DC).					

UNIT-I

Review of D.C. circuits: Ohm's Law, junction, node. Circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples. KVL, KCL, mesh & nodal analyses, Star-Delta transformation of set of resistors.

DC Network Theorems: Superposition, Thevenin's, Norton's theorems in DC networks containing both voltage and current sources and Maximum power transfer theorem in a resistive network.

UNIT-II

AC Fundamentals: AC signal, Average and RMS values of sinusoidal AC, polar & rectangular form of representation phasor quantities. Addition & subtraction of two or more phasor sinusoidal quantities using the component resolution method. Laws of EMI.

AC Circuit: Steady-state AC response of R/L/C, RL, RC series ckts, P.F., active, reactive & apparent power. Frequency response of series & parallel RLC circuit.

UNIT-III

Balanced 3-Phase AC Circuits: Advantages of 3-phase system, Star and Delta connections and their Line and Phase voltage/current relationships, three-phase power & its measurement using the 2-wattmeter method.

Single phase transformer (only qualitative analysis): MMF, Reluctance and flux flow in a magnetic circuit. Transformer: Principle – Construction - Emf equation - Phasor diagram and Equivalent Circuit, Losses in a transformer, Maximum efficiency condition, OC/SC Test & direct load test.

UNIT-IV(Only Qualitative Analysis)

Principle of Dynamo for generation of AC. Relation between synchronous speed, number of field poles and frequency. Principle of motoring. Torque & Mechanical Power developed at a rotating shaft & B.H.P. Need of starter.

DC Machines: Constructional parts & principles of working of DC Machines, generated and back EMF equation, excitation and types of DC machines, applications, speed Control of DC shunt Motor.

3-Phase Induction Motor: Basic working principle & construction of a 3- phase Induction motor, concept of slip, applications. Phase sequence and its importance in industries.

Synchronous Machines: Basic principle of working of Alternator and synchronous motor.

Suggested Books:

- 1. Basic Electrical Engg: A complete Solution by Vijay Kumar Garg, Wiley India Ltd.
- 2. Electrical Engg. Fundamentals by Rajendra Prasad, PHI Pub.
- 3. Basic Electrical and Electronics Engg. by S.K. Sahdev, Dhanpat Rai & Co./Pearson.
- 4. A.K. Maini, Digital Electronics, Wiley India

Note: An approved question paper template is to be provided to the paper setter.

B23-ESC-	109	В	asic El	ectrical E	Engine	ering Lab				
L	T	Practical	Credit	Inter	nal	Practical Exam		Total	Exam Time	
				Assess	ment					
-	-	2	1	40		60		100	3 Hrs	
Purpose	To 1	familiarize	the s	students with i		introductory	Elec	trical	& Electronics	
	Engi	ngineering practicals.								
		Course Outcomes								
CO1	Deal	s with vari	ous DC	network	theor	ems to analys	e lin	ear cir	cuits.	
CO 2		Deals with the steady-state frequency response of RLC circuit parameters solution techniques.								
CO 3		Deals with 3 phase power measurement practicals and introductory Single-Phase Transformer experiments.								
CO 4	Deals	s with the p	oractica	ls of var	ious ty	pes of motors	& sa	fety m	easures.	

LIST OF EXPERIMENTS

- 1. To verify KVL and KCL.
- 2. To verify the Superposition theorem on a linear circuit with at least one voltage & one current source.
- 3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source.
- 4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.
- 5. To study frequency response characteristics of a series R-L-C circuit on CRO and determine BW, resonant frequency & maximum current.
- 6. To study frequency response characteristics of a parallel R-L-C circuit on CRO and determine resonant frequency & minimum current.
- 7. To perform O.C. and S.C. tests on a single-phase transformer.
- 8. To perform a direct load test on a single-phase transformer and plot load v/s efficiency characteristics.
- 9. Measurement of power of a 3-phase balanced load by two-wattmeter method.
- 10. To perform speed control of the DC shunt motor.
- 11. To study cut-section models of various generators and motors.
- 12. To perform starting & reversal of direction of a three-phase induction motor.
- 13. To perform block rotor test on a motor to find the BHP of the running shaft.
- 14. Starting and running of a 3-phase synchronous motor.
- 15. To study various Safety measures: Need of Earthing, prevention & precautions against electric shock and electric hazards, shock treatment. General Precautions followed in performing practicals in BEE Lab.

Note: At least 9 experiments to be performed during the semester.

B23-VAC-		IDEA Workshop												
Lecture	Tutorial	Practical	Credit	End semester Exam	Internal Assessment	Total	Exam Time							
2	0													
Course Ou	tcomes													
CO 1	To learn	the hardware	of computer	and its configura	ition.									
CO 2	To learn a	assembling a	nd trouble sho	ooting										
CO 3	To study	the network	resource and	its technology										
CO 4	To config	gure differen	t server and n	etwork in Lab.										

UNIT-I

Introduction to Input Output Devices: keyboard, Mouse, Scanner, printer etc., Introduction to Storage Devices: RAM, ROM, Cache, Secondary storage etc., computer configutation, E-mail

UNIT-II

Assembling a PC, Basic Trouble shooting during the assembling, Basic troubleshooting of PC, BIOS & Installing Operating System

UNIT-III

Introduction to Various types of Cables and Connectors Used in Networking, Introduction to Networking and Networking Concepts, Networking Fundamentals & Network Configuration, Explain network technologies and topology, Explain how devices access local and remote network resources.

UNIT-IV

Hubs, Switches, Bridges, Routers, Configuration of IP Address, LAN set up, IP Addressing and IP Classes, Basic Network Troubleshooting, Basics of Network Security, DHCP server, FTP server, Printer Server.